17 research outputs found

    Validation platform specification – D5.1

    Get PDF
    Deliverable D5.1 del projecte Europeu OneFIT (ICT-2009-257385)The present deliverable introduces the OneFIT Proof-of-Concept (PoC) Architecture which will be used as a basis for the validation platform development throughout the project. This PoC Architecture proposal is validated by identifying the roles of the various components in the framework of the OneFIT Scenarios as derived and detailed in WP2. The applied methodology ensures that all required features are appropriately considered. Furthermore, the hardware components available to the project are detailed which are the basis for the development of an integrated validation platform. Their role is highlighted by an instantiation step which maps the PoC Architecture components to the identified hardware components. Finally, a scenario instantiation is derived which illustrates the role of the various hardware components for the validation of selected OneFIT scenarios.Postprint (published version

    Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers

    Full text link
    BACKGROUND & AIMS Carriage of rs738409:G in patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with PNPLA3 rs738409:G. This study explores the risk-associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including: 1,031 with alcohol-related cirrhosis and HCC; 1,653 with alcohol-related cirrhosis without HCC; 2,588 alcohol misusers with no liver disease; and 899 healthy controls. Genetic associations with the risks for alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for both cirrhosis (OR 0.79 [95% CI 0.72-0.88], p=8.13×10-6) and HCC (OR 0.77 [95% CI 0.68-0.89], p=2.27×10-4), while carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR 1.70 [95% CI 1.54-1.88], p=1.52x10-26) and HCC (OR 1.77 [95% CI 1.58-1.98], p=2.31×10-23). These associations remained significant after adjusting for age, sex, body mass index, type II diabetes mellitus and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women but the protective effect against the subsequent development of HCC was only observed in men (p=1.72×10-4; ORallelic, 0.75; 95% CI, 0.64-0.87). CONCLUSIONS Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population

    Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    No full text
    Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype

    Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers.

    Get PDF
    BACKGROUND & AIMS Carriage of rs738409:G in patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with PNPLA3 rs738409:G. This study explores the risk-associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including: 1,031 with alcohol-related cirrhosis and HCC; 1,653 with alcohol-related cirrhosis without HCC; 2,588 alcohol misusers with no liver disease; and 899 healthy controls. Genetic associations with the risks for alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for both cirrhosis (OR 0.79 [95% CI 0.72-0.88], p=8.13×10-6) and HCC (OR 0.77 [95% CI 0.68-0.89], p=2.27×10-4), while carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR 1.70 [95% CI 1.54-1.88], p=1.52x10-26) and HCC (OR 1.77 [95% CI 1.58-1.98], p=2.31×10-23). These associations remained significant after adjusting for age, sex, body mass index, type II diabetes mellitus and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women but the protective effect against the subsequent development of HCC was only observed in men (p=1.72×10-4; ORallelic, 0.75; 95% CI, 0.64-0.87). CONCLUSIONS Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population

    Validation platform specification – D5.1

    No full text
    Deliverable D5.1 del projecte Europeu OneFIT (ICT-2009-257385)The present deliverable introduces the OneFIT Proof-of-Concept (PoC) Architecture which will be used as a basis for the validation platform development throughout the project. This PoC Architecture proposal is validated by identifying the roles of the various components in the framework of the OneFIT Scenarios as derived and detailed in WP2. The applied methodology ensures that all required features are appropriately considered. Furthermore, the hardware components available to the project are detailed which are the basis for the development of an integrated validation platform. Their role is highlighted by an instantiation step which maps the PoC Architecture components to the identified hardware components. Finally, a scenario instantiation is derived which illustrates the role of the various hardware components for the validation of selected OneFIT scenarios
    corecore